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Recurrence of fidelity in nearly integrable systems

R. Sankaranarayanan* and Arul Lakshminarayan†
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~Received 1 May 2003; published 23 September 2003!

Within the framework of simple perturbation theory, recurrence time of quantum fidelity is related to the
period of the classical motion. This indicates the possibility of recurrence in nearly integrable systems. We
have studied such possibility in detail with the kicked rotor as an example. In accordance with the correspon-
dence principle, recurrence is observed when the underlying classical dynamics is well approximated by the
harmonic oscillator. Quantum revival of fidelity is noted in the interior of resonances, while classical-quantum
correspondence of fidelity is seen to be very short for states initially in the rotational Kolmogorov-Arnold-
Moser region.
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I. INTRODUCTION

Qualitative dynamical behavior of a classical system
characterized by the sensitivity of its orbits with respect
initial conditions. The sensitivity also changes with para
eters of the system. If an orbit is not sensitive to initial co
ditions, the underlying dynamics is regular. On the oth
hand, for chaotic dynamics the orbit is highly sensitive
initial condition. Lyapunov exponent, which measure the r
of exponential divergence of two initially close orbits, is ze
for the regular case and positive for the chaotic case.
analogous classification of dynamics is not possible in
quantum domain, since quantum theory does not accom
date the very concept of orbits.

If we associate two localized wave packets which are
tially close-by in state space, overlap of these states rem
invariant under unitary quantum evolution. The correspo
ing classical Liouville evolution of phase space densities
also a linear unitary one, but the ability to develop structu
on infinitesimal scales, without the restrictions of the unc
tainty principle, coexists with underlying orbit chaos. In t
quantum mechanical case exponential instability of, for
stance, the wave packet center is seen for quantized ch
systems over a short time scale, corresponding to the Eh
fest time scale.

One approach to quantify quantum sensitivity was in
ated a while back by Peres@1# who proposed the overlap o
states that are evolved from the same initial stateua& under
two Hamiltonians differing by a small perturbation. Th
overlap intensity, also known as fidelity, is defined as

f ~ t !5u^aueiH 1t/\e2 iH 0t/\ua&u2, ~1!

whereH0 represents the Hamiltonian of an unperturbed s
tem, H15H01eV represents the perturbed system ande is
the perturbation parameter. Fidelity has evoked enormous
terest in recent years with different interpretations. It is
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measure of quantum irreversibility in the context of decoh
ence when the system under investigation interacts wit
classically chaotic environment@2#. It is realized as polariza-
tion echo in nuclear magnetic resonance, measuring the
versibility in many body quantum dynamics@3#. It also char-
acterizes the loss of phase coherence in quan
computation@4#.

Initial investigations by Peres@1# show thatf (t) is appre-
ciable ~on a time average! and its fluctuations are more fo
the regular case than for the chaotic case. Some of the re
studies have focused on the decay rate off (t) for chaotic
systems@5#. More investigations on this topic show tha
while the fidelity decays on time scale;1/e2 for chaotic
systems, it decays on shorter time scale;1/e for integrable
systems@6#. In Ref. @7# the decay for integrable system
shown to have power-law behavior.

In this paper, using perturbative approximations, we rel
recurrence time of the quantum fidelity to the classical
riod. This indicates that recurrence of quantum fidelity wou
be possible in nearly integrable systems. With the kick
rotor as a dynamical model, we examine this recurrence p
nomenon in detail. Our numerical experiments also rev
that the evolution of fidelity exhibits a wide range of beha
ior and depends on the choice of initial state.

II. FORMULATION

Let us consider an unperturbed systemH0[H(v), with
v being the system parameter, satisfying the eigenva
equation

H0uun&5Enuun&. ~2!

Let H1[H(v8) be the perturbed system wherev85v
1e ande is the perturbation parameter. Under a small p
turbation, for the simplest zeroth-order approximation to
fidelity it is sufficient to assume that the energy eigenvalu
differ up to the first order ofe and the corresponding eigen
states remain unaffected. It is easy to see that the eigen
changes contribute to the fidelity at an ordere.

That is, the approximation we can make for the calcu
tion of fidelity amounts to the approximation

s,

h-
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H1uun&'Ẽnuun&, Ẽn'En1e
dEn

dv
. ~3!

Here dEn /dv measures the rate at whichnth level
changes with the parameter. It is also known in the literat
as level velocity wherein the parameter is thought of
pseudotime. In this approximation the fidelity can be writt
as

f ~ t !'U(
n

ucnu2expF2
i et

\ S dEn

dv D GU2

, ~4!

wherecn5^unua&. Note thatf (0)51 and we are intereste
in the time evolution of the fidelity. Assuming that th
weighting probabilitiesucnu2 are strongly centered around
meann̄, one can expanddEn /dv using Taylor series inn
aroundn̄ up to the first-order correction as

dEn

dv
5

dEn̄

dv
1~n2n̄!

d2En̄

dn dv
. ~5!

This gives the recurrence time

t r5S 2p\

e D U d2En̄

dn dvU21

~6!

such that the fidelity becomes unity whent is an integer
multiple of t r . Recollecting that the classical actionS is
quantized as (2p\)n5S,

t r5
1

eU d2En̄

dS dvU21

. ~7!

In terms ofT5dS/dE, the period of the classical orb
underlying the coherent stateua&, the recurrence time is thu
given by a combination of simple perturbative and semicl
sical approximations as

t r5
T2

e UdT

dvU21

. ~8!

Thus the recurrence time of quantum fidelity is direc
related to the period of the underlying classical motion
well as to its variability to the relevant parameters.

III. HARMONIC OSCILLATOR

According to the above relation, the quantum fidelity f
the harmonic oscillator

H~v!5
p2

2
1

1

2
v2q2 ~9!

with a classical periodT52p/v recurs at

t r5
2p

e
. ~10!
03621
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This recurrence time can also be obtained from the und
lying classical dynamics by evolving an initial phase spa
densityr(q,p) which satisfies the normalization condition

E r ~q,p! dq dp51. ~11!

Analogous to the quantum fidelity, we define normaliz
classical fidelity as

F~ t !5 H E r2~q,p! dq dpJ 21E r~q,p! r~q2t ,p2t! dq dp,

~12!

wherer (q2t ,p2t) is the final phase space density which
obtained from forward time evolution of the initial densi
for a time t with the frequency beingv, followed by back-
ward time evolution for the same timet with the frequency
set asv8. The classical fidelity measures the overlap of t
initial density with the final density so obtained.

If the forward time evolution of the oscillator is given b
(q,p)→(q̃,p̃), i.e.,

F q̃

p̃
G5F cos~vt ! ~1/v!sin~vt !

2vsin~vt ! cos~vt !
GFq

pG , ~13!

the initial density evolves forward in timet as r(q,p)
→r(qt ,pt), whereqt andpt are given by the relation

Fqt

pt
G5F cos~vt ! 2~1/v!sin~vt !

vsin~vt ! cos~vt !
GFq

pG . ~14!

Then we consider the backward evolution for the same t
t with the frequency now set tov8: r(qt ,pt)→r(q2t ,p2t),
whereq2t andp2t are given by the relation

Fq2t

p2t
G5F cos~v8t ! ~1/v8!sin~v8t !

2v8sin~v8t ! cos~v8t !
GFqt

pt
G . ~15!

We shall now write

Fq2t

p2t
G5Fa b

c dGFq

pG , ~16!

where the elements of square matrix are obtained by c
bining Eqs.~14! and ~15!.

If q2t5q and p2t5p for some timet5tR , then F(tR)
51 and the classical fidelity recurs fully. This condition
given by

Ua21 b

c d21
U50. ~17!

Since (ad2bc)51, the above condition becomesa1d
52. The recurrence timetR then satisfies the relation
6-2
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2 cos~vtR!cos~v8tR!1Fv21v82

vv8
Gsin~vtR!sin~v8tR!52.

~18!

Substitutingv85v1e and approximatingv82'v212ev
~up to the first order ofe), this condition reduces to

cos~etR!51 or tR5
2p

e
. ~19!

Thus recurrence timetR of the classical fidelity, at this
level of approximations, is identical to that of the quantu
fidelity given by Eq. ~10!. This shows that recurrence o
quantum fidelity for the harmonic oscillator is a manifes
tion of the underlying classical dynamics. If we replacev by
iv andv8 by iv8, the dynamics corresponds to the unsta
motion of an inverted harmonic oscillator. In this case t
recurrence condition is

2cosh~vtR!cosh~v8tR!

2Fv21v82

vv8
Gsinh~vtR!sinh~v8tR!52. ~20!

Up to the first order ofe, this condition reduces to
cosh(etR)51 which has only the trivial solutiontR50. Hence
there is no recurrence in the classical fidelity of the unsta
oscillator.

IV. KICKED ROTOR

For further investigations on the recurrence phenome
in nearly integrable systems, we consider the kicked ro
whose Hamiltonian is

H5
p2

2
1V~q!(

j
d~ j 2t !. ~21!

Here V(q)5kcos(2pq)/4p2 and k is the kick strength—the
only parameter of the system. The corresponding kick
kick dynamics is given by the standard map

pt115pt1~k/2p!sin~2pqt!

qt115qt1pt11
J ~mod1!. ~22!

Note that the modulo operation restrictsq andp to between
21/2 and 1/2 with the opposite edges being identified. T
kick-to-kick quantum dynamics is given by the quantum m

uc t11&5U0uc t&;U05exp@2 ip2/2\# exp@2 iV~q!/\#,
~23!

whereU0[U(k) is the unit-time quantum propagator.
The two-torus phase space can be quantized upon in

ducing periodic boundary conditions in both the canoni
variables @8#. This imposes finite numberN of quantum
states such thatN51/2p\ (N→` is the classical limit!; we
takeN5500 for the following calculations. Since the Ham
03621
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tonian is time periodic, according to Floquet theory@9#, fun-
damental solutions satisfy the eigenvalue equation

U0ufn&5eifnufn&, ~24!

wherefn are real~between 0 and 2p). If fn5En /\, then
En are called quasienergies which are analogous to the
ergy eigenvalues of the time-independent Hamiltonian s
tem @10#. Correspondingly the statesufn& are called quasien
ergy states. It is worth noting that as a consequence
Hermiticity of the Hamiltonian, the quasienergy statesufn&
are orthogonal and they form a complete set in
N-dimensional space. The quasienergy spectrum can be
merically obtained by diagonalizing the matrix represen
tion of U. Choosing the discrete position eigenstatesu l & as
the basis,U matrix takes the form@11#

^ l uUu l 8&5
1

AN
expF2 ipH 1

4
2

~ l 2 l 8!2

N
12NVS l 8

ND J G ,
~25!

wherel ,l 852N/2,2N/211, . . . ,N/221.
Let us considerU0 as an unperturbed system andU1

[U(k1dk) as the perturbed system. Then the quantum
delity is given by

f ~ t !5u^auU1
2tU0

t ua&u2. ~26!

In accordance with our earlier approximations the eigenst
of the perturbed system are taken to be such that

U1ufn&'ei f̃nufn&, f̃n'fn1dk
dfn

dk
, ~27!

wheredfn /dk5\21^fnudV/dkufn&, and quantum fidelity
for the kicked rotor can be approximated as

f ~ t !'U(
n

u^fnua&u2expF2
i tdk

\ S dfn

dk D GU2

. ~28!

This gives the recurrence time as

t r5
T2

dk UdT

dkU
21

~29!

with T being the classical period of the rotor.

V. NUMERICAL RESULTS

The dynamical features of the standard map depend
the kick strength. In the absence of kick (k50), it is just the
twist map with regular dynamics. For small kick strengt
(k,1), the phase space is predominantly regular with p
mary nonlinear resonance zones alongp50 and there are
large number of smooth Kolmogorov-Arnold-Moser~KAM !
tori in largeupu regions on which the motion is quasiperiod
~see Fig. 1!. These two distinct phase space regions are
marcated by a separatrix. In this case, the phase spac
similar to that of the simple pendulum. Ask increases, the
KAM tori are slowly destroyed and atk'1 all the KAM tori
are destroyed@12# leading to the onset of global chaos. Whe
k@1, the dynamics is predominantly chaotic. In this pap
we takek50.3 anddk50.01 throughout, as our interest
6-3
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restricted to the nearly integrable regime.
To evaluate the quantum fidelity for different regions

the phase space, we take the initial state as a coherent
peaked at (q0 ,p0), i.e., ua&5uq0 ,p0&. It is a minimum un-
certainty ~very nearly Gaussian! wave packet with equa
spreads5A\/2 in both the canonical variables. Such
initial state on the torus can be constructed by the met
devised by Saraceno@13#. The initial states we have chose
for the following computations are marked in Fig. 1.

For comparison, we also compute the classical fidelity
taking an initial phase space density to be a Gaussian,

r~q,p!5
1

2ps2 expF2
1

2s2$~q2q0!21~p2p0!2%G .
~30!

This density is a classical equivalent of the cohere
state uq0 ,p0& containing an ensemble of 104 initial condi-
tions. For the classical evolution, each point of the init
density is forward iterated using the standard map~with pa-
rameterk) for t steps, followed by backward iteration fort
steps by the corresponding time reversed map, withk being
replaced byk1dk. This gives the final densityr (q2t ,p2t).
With this, we use a discretized version of Eq.~12! to calcu-
late the classical fidelity.

It should be emphasized that the recurrence of fidelity
possible only when the perturbative approximation is va
In order to validate this approximation for different regio
of the phase space, we compute phase space represen
of inverse participation ratio as

z~q,p!5(
n

u^fnuq,p&u4 ~31!

FIG. 1. Phase space portrait of the standard map fork50.3. The
points (q0 ,p0)5(0.45,0), ~0.3,0!, ~0,0!, and (0,0.3), shown as
solid circles, correspond to the initial coherent states used for
quantum evolution.
03621
tate

d

y

e

l

s
.

tion

such thatz21 measures the effective number of statesufn&
required to construct a given region of phase space. As
see from Fig. 2, while very few states are required to c
struct the region near the stable fixed point, many states c
tribute in constructing the separatrix region and rotatio
KAM region. In other words, the low energetic part of th
spectrum that corresponds to the neighborhood of sta
fixed point has very low density of states; the high energe
part of the spectrum that corresponds to the separatrix
KAM regions is highly dense. Generally, such simple pert
bative expansions work badly for the dense spectrum. He
the approximation is expected to be valid near the sta
fixed point, and so is the recurrence of quantum fidelity. F
other cases, the approximation would not be sufficient a
the recurrence is not expected. As we demonstrate be
this is indeed the case. Nevertheless, for the dense spec
‘‘quantum revivals’’ of fidelity may occur which is beyond
the scope of present study, but it is under active study.

To begin with, we focus on the neighborhood of the sta
fixed point. Note that Jacobian of the standard map evalua
at (0.5,0) has eigenvaluese6 il and l is obtained from the
relation

eil1e2 il52cosl522k. ~32!

Since l is the frequency of the oscillatory motion in th
region, the corresponding period is

T~k!5
2p

l
52pFcos21S 22k

2 D G21

~33!

and we obtain the recurrence time as

t r5
2p

dk
Ak~42k!. ~34!

For the parameters we have considered here (k50.3,dk
50.01), the quantum fidelity recurs att r5662. If we ap-
proximate the underlying oscillatory motions by harmon
oscillators with frequencies

v5Fcos21S 22k

2 D G21

,

e

FIG. 2. The phase space representation of the inverse partic
tion ratio z(q,p) plotted fork50.3.
6-4
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v85v1e5Fcos21S 22k2dk

2 D G21

, ~35!

then t r52p/e5667.
In Fig. 3 we show the evolution of fidelity for the initia

state u0.45,0& that is localized in the neighborhood of th
stable fixed point. For initial time steps, quantum fidelity h
a smooth falloff from unity to zero. It remains nearly zero f

FIG. 3. The solid line is the quantum fidelity for the initial sta
centered at (0.45,0), near the stable fixed point, and the dashed
is the perturbative approximation~28!. The corresponding classica
fidelity, evaluated from Eq.~12!, is shown as dots.

FIG. 4. The solid line is the quantum fidelity for the initial sta
centered at (0.3,0), in the interior of the primary resonance zo
and the dashed line is the perturbative approximation~28!. For
comparison, the corresponding classical fidelity is shown as d
Inset shows the initial evolution.
03621
s

some time and then it rises and recurs att5667. This is
close to the value 662 that is obtained from perturbat
theory. Notice that the recurrence time matches exactly w
that of the harmonic oscillator approximation. The fideli
also recurs periodically and the agreement with perturba
theory is found to be good. In addition, we find that t
classical evolution exactly retraces quantum evolution. Th
fidelity for oscillatory motion in the neighborhood of a stab
fixed point exhibits very good quantum-classical corresp
dence.

ine

e,

ts.

FIG. 5. The solid line is the quantum fidelity for the initial sta
centered at (0,0), the unstable fixed point, and dashed line is
perturbative approximation~28!. Dots are the corresponding class
cal fidelity and the initial evolution is shown in the inset.

FIG. 6. The solid line is the quantum fidelity for the initial sta
centered at (0,0.3), on a rotational KAM curve, and the dashed
is the perturbative approximation~28!. Dots are the correspondin
classical fidelity and the initial evolution is shown in the inset.
6-5
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Figure 4 corresponds to the state which is initially plac
in the interior of the primary resonance zone. In this case,
quantum fidelityalmost recurs, i.e., 95% recurrence is o
served att5670. Note that this time is close to the recu
rence time predicted from the harmonic oscillator appro
mation. Here also the perturbative approximation agr
fairly well with the actual evolution. However, unlike th
previous case, classical evolution initially follows the qua
tum evolution and then deviates at later time steps. T
shows that the observednear recurrence of fidelity is a
‘‘pure’’ quantum phenomenon. This shows interestingly th
within the primary resonance zone, the quantum dynam
seems to be less sensitive to nonlinearity.

As we see from Fig. 5, quantum evolution is highly com
plex when the underlying classical motion is on the sepa
trix. The perturbative approximation fails and the fideli
does not recur. In this case, asymptotically the classica
delity becomes more stable in comparison to the quan
counterpart. If we approximate unstable motion on separa
by an inverted harmonic oscillator, classical fidelity also do
not exhibit any recurrence.

Finally, we move on to the rotational KAM region of th
phase space. A typical evolution of an initial state localiz
k,

et
n,

-

R
.
t
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in this region is shown in Fig. 6. As expected, perturbat
approximation fails and there are no signatures of fide
recurrence. Although classical motion on the KAM tori
regular, we notice that quantum-classical correspondenc
seen only for a short time. This may be due to enhan
quantum interference in this region of energetic rotatio
motion. More study on these issues is currently underwa

VI. CONCLUSION

We have shown that, within the framework of simple pe
turbative and semiclassical approximations, recurrence t
of quantum fidelity is related to the period of the classic
motion. In the case of the harmonic oscillator, fidelity recu
at t r52p/e wheree is the perturbation parameter. Invokin
the kicked rotor as an example, we have studied in detail
recurrence phenomenon for nearly integrable regimes.
shown that quantum fidelity recurs only when the underly
classical motion is well approximated by the harmonic os
lator. This recurrence is also in accordance with the co
spondence principle. Though the recurrence is not possib
other cases, quantum revival of fidelity can occur and t
needs further investigation.
ys.
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