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Recurrence of fidelity in nearly integrable systems
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Within the framework of simple perturbation theory, recurrence time of quantum fidelity is related to the
period of the classical motion. This indicates the possibility of recurrence in nearly integrable systems. We
have studied such possibility in detail with the kicked rotor as an example. In accordance with the correspon-
dence principle, recurrence is observed when the underlying classical dynamics is well approximated by the
harmonic oscillator. Quantum revival of fidelity is noted in the interior of resonances, while classical-quantum
correspondence of fidelity is seen to be very short for states initially in the rotational Kolmogorov-Arnold-
Moser region.

DOI: 10.1103/PhysRevE.68.036216 PACS nuni)er05.45.Mt, 03.65.Yz, 76.60.Lz

[. INTRODUCTION measure of quantum irreversibility in the context of decoher-
ence when the system under investigation interacts with a
Qualitative dynamical behavior of a classical system isclassically chaotic environmef2]. It is realized as polariza-
characterized by the sensitivity of its orbits with respect totion echo in nuclear magnetic resonance, measuring the irre-
initial conditions. The sensitivity also changes with param-versibility in many body quantum dynamig3]. It also char-
eters of the system. If an orbit is not sensitive to initial con-acterizes the loss of phase coherence in quantum
ditions, the underlying dynamics is regular. On the othercomputation[4].
hand, for chaotic dynamics the orbit is highly sensitive to Initial investigations by Perdd] show thatf (t) is appre-
initial condition. Lyapunov exponent, which measure the rateciable (on a time averageand its fluctuations are more for
of exponential divergence of two initially close orbits, is zerothe regular case than for the chaotic case. Some of the recent
for the regular case and positive for the chaotic case. Arstudies have focused on the decay ratef (@) for chaotic
analogous classification of dynamics is not possible in thesystems[5]. More investigations on this topic show that
quantum domain, since quantum theory does not accommavhile the fidelity decays on time scate1/e? for chaotic
date the very concept of orbits. systems, it decays on shorter time scalé/e for integrable
If we associate two localized wave packets which are inisystemg6]. In Ref. [7] the decay for integrable system is
tially close-by in state space, overlap of these states remairshown to have power-law behavior.
invariant under unitary quantum evolution. The correspond- In this paper, using perturbative approximations, we relate
ing classical Liouville evolution of phase space densities igecurrence time of the quantum fidelity to the classical pe-
also a linear unitary one, but the ability to develop structuresiod. This indicates that recurrence of quantum fidelity would
on infinitesimal scales, without the restrictions of the uncerbe possible in nearly integrable systems. With the kicked
tainty principle, coexists with underlying orbit chaos. In the rotor as a dynamical model, we examine this recurrence phe-
guantum mechanical case exponential instability of, for in-nomenon in detail. Our numerical experiments also reveal
stance, the wave packet center is seen for quantized chaoticat the evolution of fidelity exhibits a wide range of behav-
systems over a short time scale, corresponding to the Ehreier and depends on the choice of initial state.
fest time scale.
One approach to quantify quantum sensitivity was initi-

ated a while back by Per¢s] who proposed the overlap of Il. FORMULATION
states that are evolved from the same initial stateunder Let us consider an unperturbed systetg=H (), with
two Hamiltonians differing by a small perturbation. The (, peing the system parameter, satisfying the eigenvalue
overlap intensity, also known as fidelity, is defined as equation
f t): o eiHlt/hefiHOt/h a 2' (1)
( |< | | >| H0|un>:En|un>- 2

whereH, represents the Hamiltonian of an unperturbed sys-
tem,H,;=Hg+ €V represents the perturbed system anid Let Hi;=H(w') be the perturbed system whei€ = w
the perturbation parameter. Fidelity has evoked enormous i+ € and € is the perturbation parameter. Under a small per-
terest in recent years with different interpretations. It is aturbation, for the simplest zeroth-order approximation to the
fidelity it is sufficient to assume that the energy eigenvalues
differ up to the first order o€ and the corresponding eigen-
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dE,

H1|Un>~’En|un>a ’En%En‘Ff do

)

Here dE,/dw measures the rate at whichth level

changes with the parameter. It is also known in the literature
as level velocity wherein the parameter is thought of as
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This recurrence time can also be obtained from the under-
lying classical dynamics by evolving an initial phase space
densityp(q,p) which satisfies the normalization condition

f p(q,p)dqdp=1. 11

pseudotime. In this approximation the fidelity can be written

as

2

f(t>~‘2 |cn|2exp[ : (4)

iet/dE,
7\ do

wherec,=(up|@). Note thatf(0)=1 and we are interested
in the time evolution of the fidelity. Assuming that the
weighting probabilitiegc,|? are strongly centered around a

meann, one can expandE,/dw using Taylor series im
aroundn up to the first-order correction as

dE, dE; — d’E, 5
do ~do " Vinde: ©
This gives the recurrence time
(27t | d’Eq |7 6
b= € /ldndw ©

such that the fidelity becomes unity wheris an integer
multiple of t,. Recollecting that the classical actidhis
qguantized as (2A#)n=S,

1 -1

tr=;

d’E;;

dS do ™

In terms of T=dSdE, the period of the classical orbit
underlying the coherent state), the recurrence time is thus

Analogous to the quantum fidelity, we define normalized
classical fidelity as

-1
F(t)=Up2(q,p)dq dp] fp(q,p) p(dat,P2) dg dp,
(12

wherep (ga¢,p2) is the final phase space density which is
obtained from forward time evolution of the initial density
for a timet with the frequency being, followed by back-
ward time evolution for the same tintewith the frequency
set asw’. The classical fidelity measures the overlap of the
initial density with the final density so obtained.

If the forward time evolution of the oscillator is given by

(a.p)—(a,p), ie.,

cog wt)
— wSin( wt)

(l/w)sin( wt)
coq wt)

q

p

q
p

} ; (13

the initial density evolves forward in timé as p(q,p)
—p(Q;,py), Whereq; andp; are given by the relation

q:|
ol
Then we consider the backward evolution for the same time
t with the frequency now set te’: p(d:,p:)— p(d2t,P2t)s

coq wt)
wSin( wt)

—(l/w)sin( wt)
coq wt)

o
Pt

(14

given by a combination of simple perturbative and semiclasWhereda: andp, are given by the relation

sical approximations as

dT| !t

do

TZ

" €

®)

Thus the recurrence time of quantum fidelity is directly
related to the period of the underlying classical motion as

well as to its variability to the relevant parameters.

. HARMONIC OSCILLATOR

(o cofw't) (lo')sin(w't)|| g
Par) |—w'sinw't) codw't) P 13
We shall now write
dxz| [a bm
= , 16
P2c) [C d][p (19

where the elements of square matrix are obtained by com-

According to the above relation, the quantum fidelity for bining Eqs.(14) and (15).

the harmonic oscillator

2
1
H(w)= 2+ S w? ©

with a classical period =27/ w recurs at

(10

If q,x=q and py,,=p for some timet=tg, then F(tg)
=1 and the classical fidelity recurs fully. This condition is
given by

17

Since @d—bc)=1, the above condition becomes+d
=2. The recurrence timg; then satisfies the relation
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g, tonian is time periodic, according to Floquet thep®y, fun-
4 . . s :
2 Cog wiR) COS w'tg) + 2 lsin(wtg)sin(o'tg) = 2. damental solutions satisfy th? eigenvalue equation
“e Uol ) =€%rl ), (24)

(18
o ’ L, where ¢,, are real(between 0 and 2). If ¢,=E,/#, then
Substitutingw’ = w+ € and approximatings»'“~w“+2€w  E, are called quasienergies which are analogous to the en-

(up to the first order o), this condition reduces to ergy eigenvalues of the time-independent Hamiltonian sys-
tem[10]. Correspondingly the statég, ) are called quasien-
coetg)=1 o t :2_77 (19 ergy states. It is worth noting that as a consequence of
R R ¢ Hermiticity of the Hamiltonian, the quasienergy states)

are orthogonal and they form a complete set in the

Thus recurrence timeég of the classical fidelity, at this N-dimensional space. The quasienergy spectrum can be nu-
level of approximations, is identical to that of the quantummerically obtained by diagonalizing the matrix representa-
fidelity given by Eq.(10). This shows that recurrence of tion of U. Choosing the discrete position eigenstdiesas
guantum fidelity for the harmonic oscillator is a manifesta-the basislJ matrix takes the fornill]
tion of the underlying classical dynamics. If we replacéy ' )
iowandw’ byiw’, the dynamics corresponds to the unstable (a[uliy= —ex;{—iwll— (I=1") +2NV( )H
motion of an inverted harmonic oscillator. In this case the \/ﬁ 4 N N/
recurrence condition is (25)

2cosliwtg)cosiw'tg) wherel,|’=—-N/2,—-N/2+1,... N/2—1.
Let us considelU, as an unperturbed system ahk
{werwi =U(k+ 6k) as the perturbed system. Then the quantum fi-
- sinh(wtg)sinw’tg)=2. (20)  delity is given by

f(t)=[(a|U1 'Ugla)|? (26)

ww

Up to the first order ofe, this condition reduces to ) ) ) ] )
coshgtz) =1 which has only the trivial solutioty=0. Hence In accordance with our earlier approximations the eigenstates
there is no recurrence in the classical fidelity of the unstabl@f the perturbed system are taken to be such that
oscillator. - de

~ i¢’n 7 ~ k—n 2
U1|¢n> e |¢r‘l>1 ¢n ¢n+5 dk ’ ( 7)
IV. KICKED ROTOR

= 71 1 i
For further investigations on the recurrence phenomeno%?%zdk?gk/gg roilor égﬁ'db\eﬂgggfgii’mﬂgdq:sa ntum fidelity

in nearly integrable systems, we consider the kicked rotor

whose Hamiltonian is itok (de, | |2
()= 2 [(nl a)|?exp — ——| " (28)
p2 n h dk
H= ?+V(q)§j: o =), @) s gives the recurrence time as
_ 2 . . T2|dT| ¢t
Here V(q) =kcos(2rq)/47=< andk is the kick strength—the JESS (29)
only parameter of the system. The corresponding kick-to- ok|dk

kick dynamics is given by the standard map with T being the classical period of the rotor.

Pt+1= Pyt (K/27)sin(2mqy) V. NUMERICAL RESULTS

ot (mod1). (22
Qe+ 1= Gt Pres The dynamical features of the standard map depend on

Note that the modulo operation restricgandp to between  the kick strength. In the absence of kidk<0), it is just the
—1/2 and 1/2 with the opposite edges being identified. Thdwist map with regular dynamics. For small kick strengths

kick-to-kick quantum dynamics is given by the quantum map(k<1), the phase space is predominantly regular with pri-
mary nonlinear resonance zones algng0 and there are

| 1)=Uo|h);Ug=ext —ip?/2h] exd —iV(q)/#], large number of smooth Kolmogorov-Arnold-Mos&AM )
(23)  toriin large|p| regions on which the motion is quasiperiodic
(see Fig. 1L These two distinct phase space regions are de-
whereU,=U (k) is the unit-time quantum propagator. marcated by a separatrix. In this case, the phase space is
The two-torus phase space can be quantized upon intrgimilar to that of the simple pendulum. Asincreases, the
ducing periodic boundary conditions in both the canonicalk AM tori are slowly destroyed and &t~ 1 all the KAM tori
variables[8]. This imposes finite numbeN of quantum are destroyefl2] leading to the onset of global chaos. When
states such thdi=1/27% (N— is the classical limjt we  k>1, the dynamics is predominantly chaotic. In this paper,
takeN =500 for the following calculations. Since the Hamil- we takek=0.3 andsk=0.01 throughout, as our interest is
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FIG. 2. The phase space representation of the inverse participa-
tion ratio z(qg,p) plotted fork=0.3.

. such thatz~! measures the effective number of statés)
05 0 05 required to construct a given region of phase space. As we
q see from Fig. 2, while very few states are required to con-
struct the region near the stable fixed point, many states con-
tribute in constructing the separatrix region and rotational
L(AM region. In other words, the low energetic part of the
spectrum that corresponds to the neighborhood of stable
fixed point has very low density of states; the high energetic
part of the spectrum that corresponds to the separatrix and
KAM regions is highly dense. Generally, such simple pertur-
tive expansions work badly for the dense spectrum. Hence
the approximation is expected to be valid near the stable
fixed point, and so is the recurrence of quantum fidelity. For
other cases, the approximation would not be sufficient and
e recurrence is not expected. As we demonstrate below,
is is indeed the case. Nevertheless, for the dense spectrum,
guantum revivals” of fidelity may occur which is beyond
the scope of present study, but it is under active study.
Y 1o begin with, we focus on the neighborhood of the stable
fixed point. Note that Jacobian of the standard map evaluated
at (0.5,0) has eigenvalues ™ and\ is obtained from the

FIG. 1. Phase space portrait of the standard mag#$00.3. The
points (@g,pPo) =(0.45,0), (0.3,0, (0,0, and (0,0.3), shown as
solid circles, correspond to the initial coherent states used for th
quantum evolution.

restricted to the nearly integrable regime.

To evaluate the quantum fidelity for different regions of
the phase space, we take the initial state as a coherent st
peaked at §q,po), i-€.,|a)=|dg,Po)- It is @ minimum un-
certainty (very nearly Gaussignwave packet with equal
spreado=\#%/2 in both the canonical variables. Such an
initial state on the torus can be constructed by the methoﬂq
devised by Saracer|d3]. The initial states we have chosen |
for the following computations are marked in Fig. 1.

For comparison, we also compute the classical fidelity b
taking an initial phase space density to be a Gaussian,

1 1 .
p(a,p)= ZmTZeXF{_ 202{(q—q0)2+(p—p0)2} - relation | _
(30) eM e "=2c0a=2—k. (32
This density is a classical equivalent of the coherencédince\ is the frequency of the oscillatory motion in this
state|qo,p,) containing an ensemble of 40nitial condi-  region, the corresponding period is
tions. For the classical evolution, each point of the initial 5 o K\1-1
density is forward iterated using the standard nath pa- T(k)= ol cost _” (33)
rameterk) for t steps, followed by backward iteration for A 2

steps by the corresponding time reversed map, witieing

replaced byk+ sk. This gives the final density (qy;,P2t)-

With this, we use a discretized version of Ef2) to calcu-

late the classical fidelity. t,
It should be emphasized that the recurrence of fidelity is

possible only when the perturbative approximation is valid. g4, the parameters we have considered héreQ(3,0k

In order to validate this approximation for different regions =0.01), the quantum fidelity recurs §t=662. If we ap-

of the phase space, we compute phase space representatighyimate the underlying oscillatory motions by harmonic
of inverse participation ratio as oscillators with frequencies
2—k\|
2 1

and we obtain the recurrence time as

=~ Vk(@—K). (34)

cos !

z(q,p>=; [(pnla,p)|* (31) w=
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FIG. 3. The solid line is the quantum fidelity for the initial state  F|G. 5. The solid line is the quantum fidelity for the initial state
centered at (0.45,0), near the stable fixed point, and the dashed liggntered at (0,0), the unstable fixed point, and dashed line is the
is the perturbative approximatid@8). The corresponding classical perturbative approximatiof28). Dots are the corresponding classi-
fidelity, evaluated from Eq(12), is shown as dots. cal fidelity and the initial evolution is shown in the inset.

2—_k—osk\1-1 some time and then it rises and recurstat667. This is
o' =w+te= cos‘1<2) , (35 close to the value 662 that is obtained from perturbation
theory. Notice that the recurrence time matches exactly with

that of the harmonic oscillator approximation. The fidelity
also recurs periodically and the agreement with perturbation

; ) ) : theory is found to be good. In addition, we find that the
state|0._45,0> that IS chf'i_llzeq in the ne|ghborh0(_)d (.)f the classical evolution exactly retraces quantum evolution. Thus,
stable fixed point. For initial time steps, quantum fidelity has

2 smooth falloff from unity to zero. It remains nearly zero for fidelity for oscillatory motion in the neighborhood of a stable
y ' y fixed point exhibits very good quantum-classical correspon-

thent,=27/e=667.
In Fig. 3 we show the evolution of fidelity for the initial

dence.
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FIG. 4. The solid line is the quantum fidelity for the initial state

centered at (0.3,0), in the interior of the primary resonance zone, FIG. 6. The solid line is the quantum fidelity for the initial state
and the dashed line is the perturbative approximati@®). For centered at (0,0.3), on a rotational KAM curve, and the dashed line
comparison, the corresponding classical fidelity is shown as dotss the perturbative approximatidi28). Dots are the corresponding
Inset shows the initial evolution. classical fidelity and the initial evolution is shown in the inset.
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Figure 4 corresponds to the state which is initially placedin this region is shown in Fig. 6. As expected, perturbative
in the interior of the primary resonance zone. In this case, thapproximation fails and there are no signatures of fidelity
guantum fidelityalmostrecurs, i.e., 95% recurrence is ob- recurrence. Although classical motion on the KAM tori is
served att=670. Note that this time is close to the recur- regular, we notice that quantum-classical correspondence is
rence time predicted from the harmonic oscillator approxi-seen only for a short time. This may be due to enhanced
mation. Here also the perturbative approximation agreeguantum interference in this region of energetic rotational
fairly well with the actual evolution. However, unlike the motion. More study on these issues is currently underway.
previous case, classical evolution initially follows the quan-
tum evolution and then deviates at later time §tep§. This VI. CONCLUSION
shows that the observedear recurrence of fidelity is a
“pure” quantum phenomenon. This shows interestingly that, We have shown that, within the framework of simple per-
within the primary resonance zone, the quantum dynamicturbative and semiclassical approximations, recurrence time
seems to be less sensitive to nonlinearity. of quantum fidelity is related to the period of the classical

As we see from Fig. 5, quantum evolution is highly com- motion. In the case of the harmonic oscillator, fidelity recurs
plex when the underlying classical motion is on the separaatt,=2m/e wheree is the perturbation parameter. Invoking
trix. The perturbative approximation fails and the fidelity the kicked rotor as an example, we have studied in detail the
does not recur. In this case, asymptotically the classical firecurrence phenomenon for nearly integrable regimes. It is
delity becomes more stable in comparison to the quanturshown that quantum fidelity recurs only when the underlying
counterpart. If we approximate unstable motion on separatrixlassical motion is well approximated by the harmonic oscil-
by an inverted harmonic oscillator, classical fidelity also doedator. This recurrence is also in accordance with the corre-
not exhibit any recurrence. spondence principle. Though the recurrence is not possible in

Finally, we move on to the rotational KAM region of the other cases, quantum revival of fidelity can occur and this
phase space. A typical evolution of an initial state localizedneeds further investigation.
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